5 research outputs found

    The influence of anisotropic growth and geometry on the stress of solid tumors

    Get PDF
    Solid stresses can affect tumor patho-physiology in at least two ways: directly, by compressing cancer and stromal cells, and indirectly, by deforming blood and lymphatic vessels. In this work, we model the tumor mass as a growing hyperelastic material. We enforce a multiplicative decomposition of the deformation gradient to study the role of anisotropic tumor growth on the evolution and spatial distribution of stresses. Specifically, we exploit radial symmetry and analyze the response of circumferential and radial stresses to (a) degree of anisotropy, (b) geometry of the tumor mass (cylindrical versus spherical shape), and (c) different tumor types (in terms of mechanical properties). According to our results, both radial and circumferential stresses are compressive in the tumor inner regions, whereas circumferential stresses are tensile at the periphery. Furthermore, we show that the growth rate is inversely correlated with the stresses’ magnitudes. These qualitative trends are consistent with experimental results. Our findings therefore elucidate the role of anisotropic growth on the tumor stress state. The potential of stress-alleviation strategies working together with anticancer therapies can result in better treatments

    The role of malignant tissue on the thermal distribution of cancerous breast

    Get PDF
    The present work focuses on the integration of analytical and numerical strategies to investigate the thermal distribution of cancerous breasts. Coupled stationary bioheat transfer equations are considered for the glandular and heterogeneous tumor regions, which are characterized by different thermophysical properties. The cross-section of the cancerous breast is identified by a homogeneous glandular tissue that surrounds the heterogeneous tumor tissue, which is assumed to be a two-phase periodic composite with non-overlapping circular inclusions and a square lattice distribution, wherein the constituents exhibit isotropic thermal conductivity behavior. Asymptotic periodic homogenization method is used to find the effective properties in the heterogeneous region. The tissue effective thermal conductivities are computed analytically and then used in the homogenized model, which is solved numerically. Results are compared with appropriate experimental data reported in the literature. In particular, the tissue scale temperature profile agrees with experimental observations. Moreover, as a novelty result we find that the tumor volume fraction in the heterogeneous zone influences the breast surface temperature

    Mathematical modeling of the interplay between stress and anisotropic growth of avascular tumors

    Get PDF
    In this work, we propose a new mathematical framework for the study of the mutual interplay between anisotropic growth and stresses of an avascular tumor surrounded by an external medium. The mechanical response of the tumor is dictated by anisotropic growth, and reduces to that of an elastic, isotropic, and incompressible material when the latter is not taking place. Both proliferation and death of tumor cells are in turn assumed to depend on the stresses. We perform a parametric analysis in terms of key parameters representing growth anisotropy and the influence of stresses on tumor growth in order to determine how these effects affect tumor progression. We observe that tumor progression is enhanced when anisotropic growth is considered, and that mechanical stresses play a major role in limiting tumor growth

    Analytical formulas for complex permittivity of periodic composites. Estimation of gain and loss enhancement in active and passive composites

    No full text
    The asymptotic homogenization method is applied to complex dielectric periodic composites. An equivalence to coupled dielectric problems with real coefficients is shown. This is similar to a piezoelectric problem: an out-plane mechanical displacement and an in-plane electric potential establishing a correspondence principle. Closed-form formulas for the complex dielectric effective tensor in the case of a square array of circular inclusions embedded in a matrix are given. These formulas are written in terms of a real and symmetric matrix which facilitates the implementation of the computational scheme. We also get similar formulas for multilayered complex dielectric composites. The real closed-form formulas are advantageous for estimating gain and loss enhancement properties of active and passive composites in certain volume fraction intervals. Numerical computations are performed and the results are compared with other approaches showing the usefulness of the obtained formulas. This may be of interest in the context of metamaterials
    corecore